CLIMATE CHANGE PROJECTED EFFECTS ON COASTAL FOUNDATION COMMUNITIES OF THE GREATER EVERGLADES USING A 2060 SCENARIO: NEED FOR A NEW MANAGEMENT PARADIGM

J. Environmental Management (2015)

55:857-875

DOI 10.1007/s00267-014-0375-y

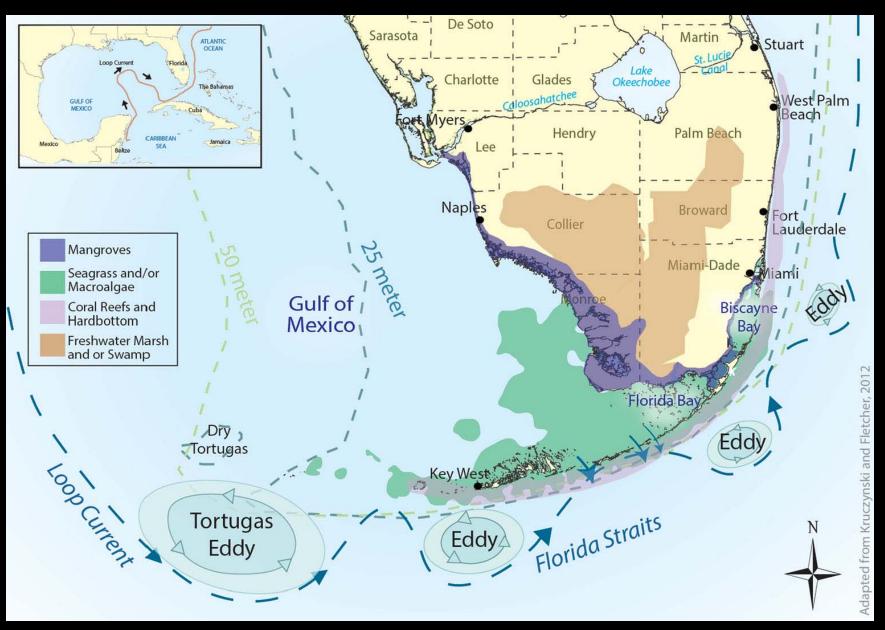
M. S. Koch

C. Coronado F. H. Sklar

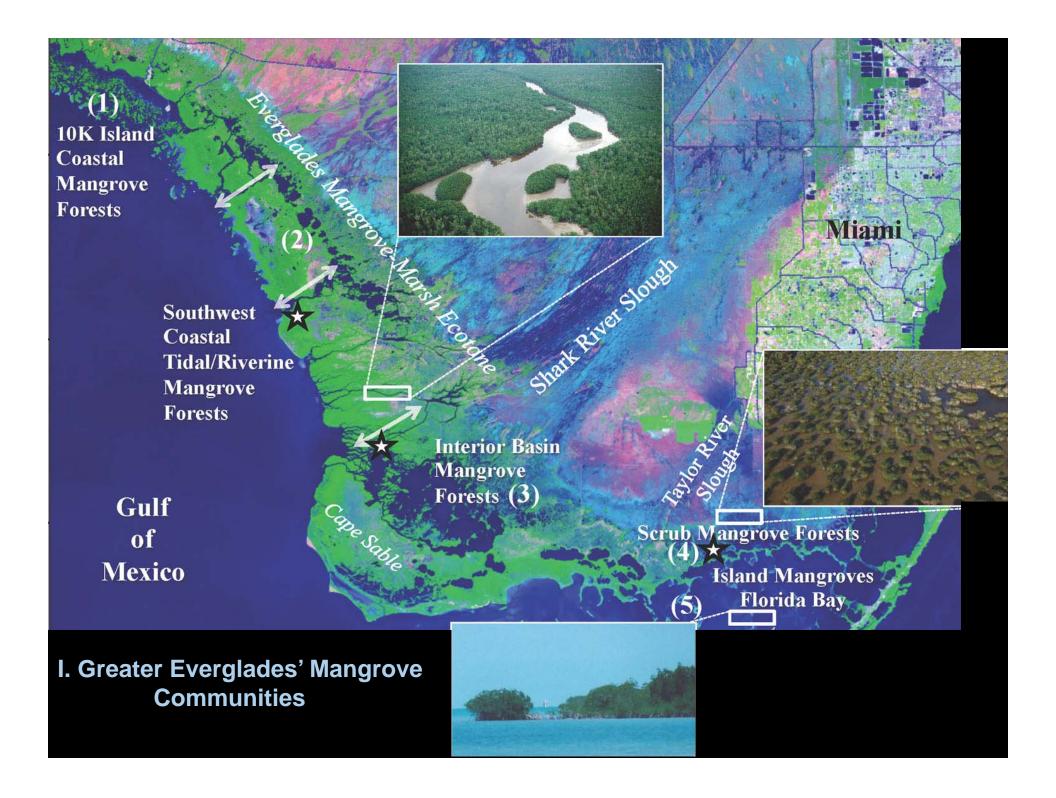
M. W. Miller

D. T. Rudnick E. Stabenau

R. B. Halley (retired)



OUTLINE


- I. Greater Everglades Coastal Foundation Communities
- II. 2060 Climate Change Scenarios Examined
- **III.** Synthesis of Community Response to Drivers
- **IV. Conclusion/Recommendations**
 - 1. NEED FOR A NEW MANAGEMENT PARADIGM
 - 2. Cross-System Research, Monitoring, Management
 - 3. Active Management

GREATER EVERGLADES' COASTAL MARINE FOUNDATION COMMUNITIES

THREATS TO TRANSGRESSIVE BOUNDARIES (CLIMATE AND SEA LEVEL RISE)

- I. 1.5 Foot SLR Increase (9.5 mm y⁻¹)
- II. +1.5 °C Temperature Increase
- **III.** 490 ppm CO₂
- IV. +/- 10% Change in Precipitation

II. Greater Everglades' Seagrass, Macroalgae (Mudbanks in FL Bay) III. Reef Communities

I. 1.5 Foot SLR Increase (9.5 mm y⁻¹) II. +1.5 °C Temperature Increase III. 490 ppm CO₂ IV. 1/- 10% Change in Precipitation

IV. +/- 10% Change in Precipitation

FOUNDATION COMMUNITY	Еғест	Strength	DIRECT	Summary/Comments	CONFIDENCE	(L,M,H)	
SEA LEVEL RISE (46 CM)							
Mangrove	(-)	3	D	 Everglades' forest elevation change < 3 mm y⁻¹ 	• N	1H	
				 STORM SURGE, SALT INTRUSION AND LOSS OF PEAT 	• LI	М	
SEAGRASS/				• WETLAND AND MUDBANK EROSION/NUTRIENT FLUX LEADS	• L		
	(-)	2-3	Т	TO LOW LIGHT			
Macroalgae				• Shift seagrass to phytoplankton system under low light conditions	• L		
	(-)	2-3	Ι	• Water quality $igsidesimple$ with wetland $m{\&}$ mudbank erosion	• L		
CORAL REEFS				AND GULF/FL BAY/REEF CONNECTION			

I. 1.5 Foot SLR Increase (9.5 mm y⁻¹) II. +1.5 °C Temperature Increase III. 490 ppm CO₂ IV. +/- 10% Change in Precipitation

FOUNDATION	Соммииту	Еғест	Strength	DIRECT	Summary/Comments	Confidence	(H,M,H)
				TEN	IPERATURE RISE (+1.5°C)		
MA	ANGROVE	(-/0)	1-2	D-I	 OPTIMAL TEMPERATURES ↓ (25-30 °C) High thermal tolerance (~40°C) High temperature can ↑ soil salinity Thermal and salinity stress ↓ root production important counter ↑ sea levels 	• № • № • H • LI	1
	agrass/ croalgae	(-)	1-2	D-I	 Long water residence time FL Bay - 个 temperatures (36-40°C) at thermal limits Hypersalinity (60-70 psu) with 个 temp Greater exchange with sea level rise may ameliorate this temperature/salinity stress Hypoxia & toxic sulfides sediments 个 with 个 temp 	• H • H • L • H	
Сог	RAL REEFS	(-)	3	D-I	 CURRENTLY AT THERMAL LIMITS - 个 BLEACHING DECADAL DECLINE IN REEF BUILDING CORALS IN FLORIDA AND WIDER CARIBBEAN REGION INCREASED CORAL DISEASE WITH 个 TEMPERATURE SPECIES-SPECIFIC RESILIENCE 	• H • H • N • LI	1H

I. 1.5 Foot SLR Increase (9.5 mm y⁻¹)
 II. +1.5 °C Temperature Increase
 III. 490 ppm CO₂

IV. +/- 10% Change in Precipitation

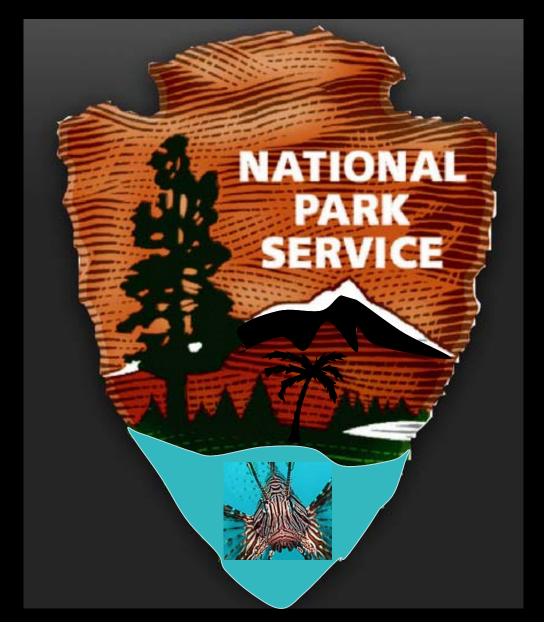
FOUNDATION COMMUNITY	Егест	Strength	DIRECT	Summary/Comments	CONFIDENCE	(H,M,H)	
INCREASE ATMOSPHERIC CO ₂ (490 PPM)							
MANGROVE	(+/0)	1	D	 Increased CO₂ ↑ photosynthesis if CO₂ limited Increase above and below-ground production 	• L • L	•	
Seagrass/ Macroalgae	(+/- /0)	1-2	D/I	 Some seagrass/fleshy macroalgae ↑ growth & photosynthesis with ↑ CO₂ Calcifiers & sediments ↑ dissolution ↓ calcification Daily variance CO₂ ↑ (~325-725 ppm) in FL Bay Short-term global ocean 2060 level irrelevant Long-term ↑ dissolution ↓ calcification & release calcium-bound nutrients from sediment 	• เ	л ИН И	
CORAL REEFS	(-)	1-2	D/I	 Lower CACO₃ SATURATION ↓ NET CALCIFICATION Refugia patch reefs in seagrass ↓ CO₂ Reef structure ↓ INTEGRITY ↑ BIOEROSION 	• L • L • L	M	

I. 1.5 Foot SLR Increase (9.5 mm y⁻¹)
II. +1.5 °C Temperature Increase
III. 490 ppm CO₂

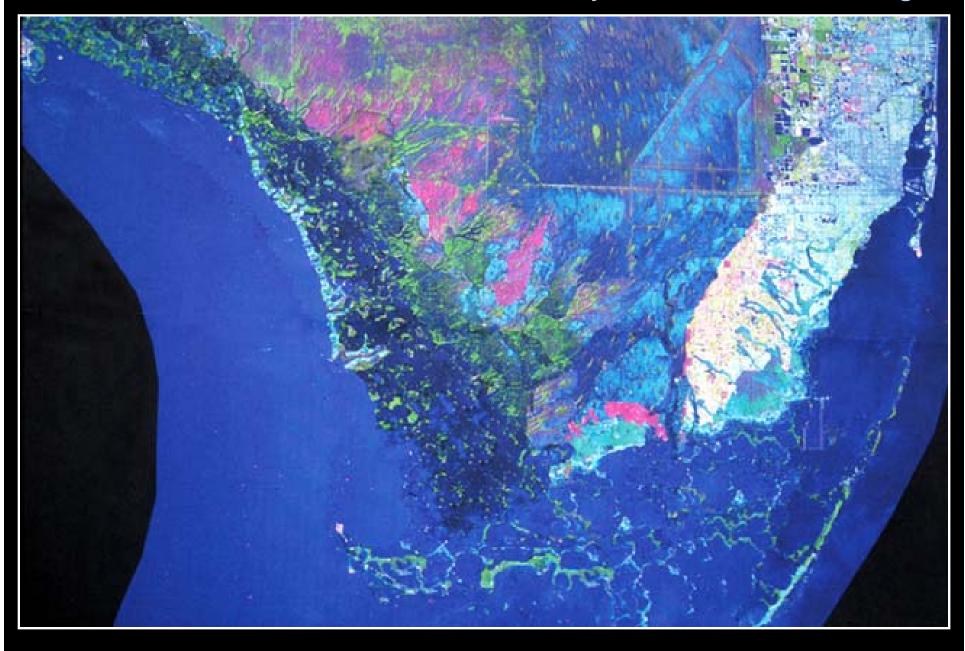
IV. +/- 10% Change in Precipitation

FOUNDATION	COMMUNITY	EFFECT	Strength	DIRECT	Summary/Comments	CONFIDENCE	(H,M,H)
HIGHER PRECIPITATION (10%)							
N	1 angrove	(+)	2	D/I	 LOWER SALINITY STRESS GREATER ABOVE- AND BELOW-GROUND PRODUCTION MITIGATE SEA LEVEL RISE INFLUENCE AT INLAND BOUNDARY % INCREASE IN PRECIPITATION TO AMELIORATE IMPACTS 	• F • L • L	
	eagrass/ ACROALGAE	(+)	2	D	 Less hypersalinity in northern FL Bay Modest effect on central bay /western areas % increase in precipitation to ameliorate impacts 	• N • N • L	
Co	DRAL R EEFS	(0/+)	1	Ι	• NOT LIKELY TO AFFECT REEFS UNLESS AFFECT TEMPERATURE	• MH	

FOUNDATION	COMMUNITY	EFFECT	Strength	DIRECT	Summary/Comments	CONFIDENCE	(H,M,H)
LOWER PRECIPITATION (10%)							
N	I ANGROVE	(-/+)	2-3	H	 INCREASED SALINITY STRESS & > SALTWATER INTRUSION > OXIDATION FRESHWATER PEATS & FIRE PROBABILITY INCREASE MANGROVE MOVEMENT INLAND PERCENT INCREASE IN PRECIPITATION CAUSE IMPACTS 	• N • N • N • L	ЛН ЛН
S	EAGRASS/			5/1	• INCREASED HYPERSALINITY EVENTS FL B AY	• N	
M	ACROALGAE	(-)	2-3	2-3 D/I	 INCREASED HYPOXIA Less seagrass biodiversity at ecotone Percent increase in precipitation cause impacts 	• N • N • L	ЛН
	DRAL R EEFS	(0/-)	1	1		• N	лн

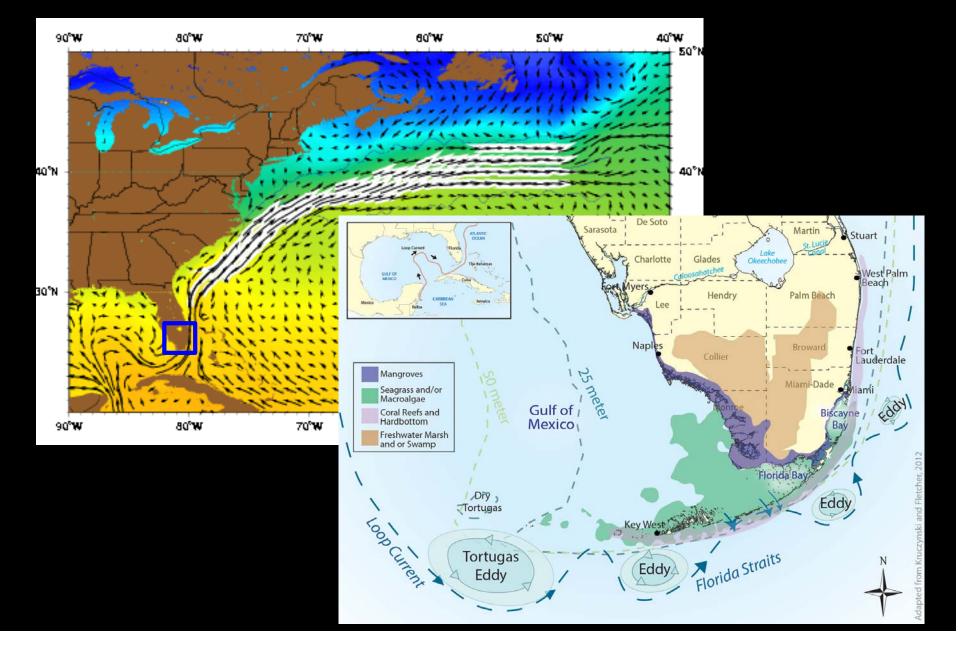

THE OLD PARADIGM

- Definitive "Stable" Boundaries
- Containment Management Approach


THE NEW PARADIGM

- Transgressive Boundaries Moving
- Adaptive "Active" Management Approach

RECOMMENDATION #1


 An integrative and resilience-focused management strategy is needed as marineterrestrial boundaries become dynamic with marine transgression, particularly in landscapes such as South Florida with microelevation gradients. New management Approach on broad-scale coupling of structure and dynamics: Connected terrestrial, freshwater, and marine ecosystems under climate change.

RECOMMENDATION #2

- Develop large-scale watershed-coastal models that integrate water, land, infrastructure and management to optimize natural and built system sustainability.
- **Downscaled** sea level rise models.
- Modeling climate impacts and upstream water management effects on critical coastal habitats.
- Model data requirements (water quality, hydrographic, geomorphological, and ecological)


Strong Regional Drivers (Climate, Currents, Ocean Temperature)

RECOMMENDATION #3

Active approach to management to sustain marine ecosystems succumbing to climate impacts.

Coral Propagation and Resettlement

United States Department of Commerce

National Oceanic and Atmospheric Administration

National Marine Fisheries Service

March 2015

Recovery Plan

Elkhorn Coral (Acropora palmata) and Staghorn Coral (A. cervicornis)

Southeast Regional Office Protected Resources Division 263 13th Avenue South Saint Petersburg, Florida 33701 Phone (727) 824-5312

Staghorn Coral (Acropora cervicornis)

Elkhorn coral (A. palmata)

RECOMMENDATION #4

Develop a comprehensive regional/local governance and planning framework to coordinate research and planning efforts to sustain South Florida under climate change.

Summary

SALIENT RESPONSES SCENARIOS:

- ➢ MANGROVE AND REEF COMMUNITIES THREATENED BY SEA LEVEL RISE AND CLIMATE CHANGE, RESPECTIVELY (HIGH IMPACT AND CERTAINTY)
- Less Certainty Water Quality, Geomorphology and Regional Current Changes
- HIGHER PRECIPITATION POSITIVE AND LOWER PRECIPITATION NEGATIVE EFFECT, BUT AMOUNTS THAT AMELIORATE SEA LEVEL RISE UNCERTAIN

RECOMMENDATIONS:

- ➢ AN INTEGRATIVE AND RESILIENCE-FOCUSED MANAGEMENT STRATEGY
- LARGER-REGIONAL MODEL INTEGRATION AND GEOGRAPHIC LINKAGES
- ACTIVE MANAGEMENT
- COMPREHENSIVE REGIONAL/LOCAL GOVERNANCE AND PLANNING

Questions?